www.design-reuse-china.com
搜索,选择,比较,与提供商进行安全高效的联系
Design & Reuse We Chat
D&R中国官方微信公众号,
关注获取最新IP SOC业界资讯

AI革命时代的HPC系统及芯片发展五大趋势

当前,以ChatGPT为代表的生成式人工智能应用风头无两,正在全球科技巨头间掀起新一轮的技术竞赛。在很多人看来,ChatGPT的上线或可被视作一次新产业革命的引爆点,而这个引爆点之所以能出现,则离不开背后的高性能计算与大数据基础设施。

www.eefocus.com/, Mar. 05, 2023 – 

ChatGPT基于Open AI公司的GPT-3系列语言大模型来实现,GPT(Generative Pre-trained Transformer)即生成式预训练转换模型,是一种基于互联网可用数据训练的文本生成深度学习模型。

为了实现和人类可比拟的语言交互和语言组织能力,GPT-3的参数达到1750亿个,相比之下,2018年推出的GPT-1,参数为1.17亿个,而2019年推出的GPT-2参数则达到15亿个,量变最终将引发质变,参数规模的飞速膨胀,对支撑GPT运行的硬件系统提出了越来越高的要求,对于类似GPT这样的大模型,没有高性能硬件支撑,根本无法去实现与部署,更不要说随着新数据的涌入来迭代了。

所以,在众厂商纷纷宣布加码大模型AI投入时,有人断言,新一轮AI竞赛鹿死谁手还很难说,但高性能计算(HPC)系统中的高算力芯片、高带宽互连芯片和存储芯片一定是赢家。

HPC及其核心芯片发展趋势

那么,高性能计算要如何发展才能更好地支持新一波人工智能发展浪潮?而人工智能将如何影响到高性能计算本身呢?有如下几点,可供探讨。

第一,高性能计算与人工智能相得益彰。人工智能的每一次高速发展,都离不开背后硬件基础设施的支持,而高速发展的AI又对硬件基础设施提出了更高的要求,激励芯片或系统性能成倍上升。

在Open AI 2018年发布的报告中,对自2012至2018年人工智能训练对算力的需求超过30万倍,算力需求平均每3.5个月翻一番,这给芯片及硬件系统更新换代带来极大压力,因为按摩尔定律的性能升级速度,已经不能满足AI训练对芯片性能的需求增长速度了。

点击阅读更多

 Back

业务合作

广告发布

访问我们的广告选项

添加产品

供应商免费录入产品信息

© 2023 Design And Reuse

版权所有

本网站的任何部分未经Design&Reuse许可,
不得复制,重发, 转载或以其他方式使用。