www.design-reuse-china.com
搜索,选择,比较,与提供商进行安全高效的联系
Design & Reuse We Chat
D&R中国官方微信公众号,
关注获取最新IP SOC业界资讯

Don't over-constrain in formal property verification (FPV) flows

by Anders Nordstrom, Synopsys (EDN), Feb. 04, 2016 – 

Formal property verification (FPV) is increasingly being used to complement simulation for system-on-chip (SoC) verification. Adding FPV to your verification flow can greatly accelerate verification closure and find tough corner-case bugs, but it is important to understand the differences between the technologies. The main difference is that FPV uses properties, i.e., assertions and constraints, instead of a testbench. Assertions are used in simulation as well, but the role of constraints is different. An understanding of constraints is necessary for successful use of FPV.

Constraints

Constraints play a central role in FPV. They define what is legal stimulus to the design under test, i.e., what state space can be reached. Assertions define the desired behavior of the DUT for the legal stimulus.

Constraints describe how inputs to the DUT are allowed to behave, what values should be taken, and temporal relationships between inputs. Constraints can be thought of as the stimulus in simulation. In constrained random simulation, the constraint solver generates an input vector for the next cycle that satisfies all constraints. It will continue to generate cycle after cycle of stimulus until the end of simulation, or until it reaches a situation where no legal stimulus can be generated.

In contrast, constraints for formal verification can describe, for example, how to legally communicate within a given protocol.


Click here to read more...

 Back

业务合作

广告发布

访问我们的广告选项

添加产品

供应商免费录入产品信息

© 2023 Design And Reuse

版权所有

本网站的任何部分未经Design&Reuse许可,
不得复制,重发, 转载或以其他方式使用。