www.design-reuse-china.com
搜索,选择,比较,与提供商进行安全高效的联系
Design & Reuse We Chat
D&R中国官方微信公众号,
关注获取最新IP SOC业界资讯

提高 TinyML、ML-DSP 和深度学习工作负载的能效

近来,对实时决策、降低数据吞吐量以及注重隐私的需求,已将人工智能处理的很大一部分工作转移到边缘。这一转变催生了大量边缘人工智能应用,每种应用都有着不同的要求,面临着不同

www.eet-china.com/, Nov. 08, 2023 – 

近来,对实时决策、降低数据吞吐量以及注重隐私的需求,已将人工智能处理的很大一部分工作转移到边缘。这一转变催生了大量边缘人工智能应用,每种应用都有着不同的要求,面临着不同的挑战。据预测,2025 年人工智能 SoC 市场规模将达到 500 亿美元 [资料来源:Pitchbook Emerging Tech Research],边缘人工智能芯片预计将在这一市场中占据重要地位。

人工智能处理向边缘转移及提高能效势在必行

人工智能处理向边缘转移标志着一系列应用(从物联网传感器到自主系统)进入了实时决策的新时代。这一转移有助于:减少延迟,这对即时响应起到决定性作用;通过本地处理提高数据隐私保证;支持离线功能,确保在远程或具有挑战性的环境中不间断运行。由于这些边缘应用在电池供电的设备上运行,能效有限,因此能效在这一变革中会成为焦点。

边缘人工智能工作负载本质多元

确保边缘人工智能处理能效的关键难题之一是工作负载本质多元。不同应用的工作负载大不相同,带来独特挑战。总体而言,所有人工智能处理工作负载可大致分为 TinyML、ML-DSP 及深度学习工作负载。

TinyML:声音分类、关键词识别及人体存在检测等任务需要在传感器附近进行低延迟、实时处理。此处涉及的工作负载称为 TinyML,牵涉到在资源有限的边缘设备上运行轻量级机器学习模型。TinyML 模型专为特定硬件定制,支持顺利执行人工智能任务。定制硬件处理器和高度优化的软件库对于满足 TinyML 严格至极的功耗要求至关重要。

深度学习:相较而言,深度学习应用程序是一种计算密集型工作负载。此类应用程序涉及运行复杂的计算,通常出现在高级计算机视觉、自然语言处理及其他经典和生成式人工智能密集型任务中。深度学习具有计算密集型特性,通常需要专门的硬件,如神经处理单元 (NPU)。NPU 采用多层神经网络结构,能够高效地处理各种复杂的计算任务。NPU 可为高级人工智能任务提供所需的计算能力,而且能效很高。

ML-DSP:介于上述两类工作负载之间的是 ML-DSP 工作负载,涉及 DSP 处理、过滤及清理信号,然后才能执行人工智能感知任务。雷达属于此类工作负载,是一种涉及点云图像分析的常见应用。

点击阅读更多

 Back

业务合作

广告发布

访问我们的广告选项

添加产品

供应商免费录入产品信息

© 2023 Design And Reuse

版权所有

本网站的任何部分未经Design&Reuse许可,
不得复制,重发, 转载或以其他方式使用。